
Surface terms in higher derivative gravity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 L139

(http://iopscience.iop.org/0305-4470/14/5/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) L139-L143. Printed in Great Britain 

LETTER TO THE EDITOR 

Surface terms in higher derivative gravity 

T S Bunch 
Department of Applied Mathematics and Theoretical Physics, Liverpool Uni,versity, PO 
Box 147, Liverpool L69 3BX, England 

Received 3 December 1980, in final form 5 February 1981 

Abstract. Surface terms in a gravitational action containing the quadratic curvature scalars 
RZ,  R"@R,, and R"4qSR,pys are considered and it is shown that a suitable surface term 
exists only for the combination R2-4R"@R,p + RuPqsR,p,s. The effect that the inclusion 
of this term in the action has on black hole evaporation is investigated. 

One of the more striking results of quantum field theory in curved space-time is that the 
requirement of renormalisability demands that the classical gravitational action should 
be supplemented by terms quadratic in the curvature (Utiyama and De  Witt 1962). 
Moreover, the inclusion of such terms leads to a renormalisable theory of gravity 
interacting with matter (Stelle 1977), although these terms also lead to negative 
probabilities and acausal behaviour and the correct physical interpretation of the 
theory, if any exists, is unclear. Recently, Gibbons and Hawking (1977) have argued 
that the Einstein gravitational action is incomplete and must be supplemented by a 
surface term involving the integral over the boundary of space-time of the trace of the 
second fundamental form. In this Letter, I investigate the surface terms corresponding 
to the quadratic curvature scalars R 2 ,  RmPRap, Rapvs RaPrs and find that a suitable 
surface term exists on!y for the particular linear combination R2-4RmPRap  + 

RmPrs which in four dimensions is the Gauss-Bonnet invariant. Hence if one 
accepts the necessity for surface terms in the action, renormalisability of quantum 
gravity cannot be achieved simply b) including independent scalars R 2 ,  RmPRaP and 

Rapvs in the action. I also show that such a term makes a very simple modification 
to the partition function of a black hole which suggests that the end state of black hole 
evaporation is a black hole of Planck dimensions, although this conclusion is rather 
tentative as the effect of the back reaction is not considered. 

R aPTs 

R a P Y s  

Let 

I1 = R 2 C g d 4 x  I 
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Under variations in the metric, Sgmp, which vanish on the boundary of the region of 
integration 

611 = [;(R'g"' -4RRaP)+2(R;" '  -ORgap)]  SgmpJ<d4x-2 Rh"'nPVPSgaP dX 

SI, = I [' 2R11YR~,,gap -2R,,R'"""' + R;"@ -OR"' -&RgmP]Fgd4x  

I I 

+ I [R,,(h""h"' - h@"h "') - RheP]nPVP Sgap dX 

where h,, = g,, n,n, is the induced metric on the boundary, n, is the normal to the 
boundary hypersurface normalised so that nWn, = *l with +1 for a time-like hyper- 
surface, and dC is the covariant surface element J z  d3x where h = det(h,,). Field 
equations based on an action containing 11, I2 and I3 follow if one assumes that 
npVp SgWp vanishes on the boundary. However, Gibbons and Hawking (1977) argue 
that this is too restrictive in the quantum theory and that the surface terms in SI1, SI2 and 
SI3 should be cancelled by including appropriate surface terms in the action. Possible 
surface terms are 

J2= AKdZ I J1= KaPllap dX 

J s  = RapK dX J6 = I Rap,sKaYhPS dC 

J s =  KKapKK,p dC JS= Ka'Kp,K,' dZ I I J7= K 3 d C  I 
where Kup is the second fundamental form, K its trace, AK Kll, a and / I  denotes the 
covariant derivative based on the metric hap. In addition to the terms above one might 
expect surface integrals of single derivatives of the Riemann curvature. Only deriva- 
tives within the surface are allowed and the only such term possible is Rep;,nahpv. 
However, the following identity, derived from the Codacci equation, shows that this 
term is not independent of those given above: 

Terms involving single derivatives of the extrinsic curvature Kap are also related to 
those above, for example, 

K"'Kmp;,nP =-K"'K,pKf. 

Under variations Sgap which vanish on the boundary, both J 1  and J2  yield third 
derivatives of Sgmp but the remaining terms yield only first and second derivatives of 
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Sgap.  A straightforward calculation leads to 

SJ,=, h"'"hP"nPSg,p~pwu dC+.  . . 

S J Z = ~  haphwYnPSg,P;PILY d Z + .  . . 

'I 
'I 

where only the third derivatives of Sgaa have been retained. Now it is clear that there 
exists no linear combination of J1 and J2 for which these leading terms in SJ1 and SJ2 can 
be made to cancel. Therefore J1 and J2 cannot be included as surface terms in the 
action. Now consider J3,  . . . , J9: 

SJ3 = 1 [$Rh** * K ( K a B  -Kg"')]nPV, Sgmp dZ 

* K ( n  ,hP" + n Ohuu - n"h"')V,(n ' V ,  Sg,,) dZ 5 
[R,,h'""h"P+K2n"n'*2K(K"p -Kg"')]n"V,Sg,p dC 

f - K ( n  ,hpU + n 'ha" - n "hmP)V, ( n T +  Sg,,) dZ 
2 'I 

SJ -- [R,,h'"h"P*(2K"AKf -KK"' -KfiAK,Ag"P)]nPV,8g,o dZ 
5 - 2  ' 5  

[Kn f fnP  +KP"na -KKaPnu]V,(n'V,Sg,p) dZ 

SJ6 = 5 [R,,,h'""h"~ T RWavPn,ny f (2KzKAP - KK"' - KFAK,Ah"P)]nPV, Sgap dZ 

2 

K2h"'nPV,Sg,p dC 

SJ, = J [$KwAK,AhaP +KK"']nPV, Sg,, dZ 

K e A K f n P V ,  Sg,, dZ. 

Now SJ3, SJ4 and SJ5 all contain second derivatives of Sg,, which must cancel mutually. 
This requires J3 and J4 to be present only in the combination J3 - 2J4 and for Js  to be 
absent. Hence S(J3-2J4) and SJ6 are available to cancel surface terms in SI1, SIz  and 
SI3 and it is not difficult to verify that this can be done only for the combination 
11 -4I2+I3.  The final result is that the only term that can be included in the action is 

It is of interest to investigate what effect the inclusion of the Gauss-Bonnet invariant 
in the gravitational action has on black hole evaporation. The Euclideanised action is 

11 -412 + 1 3  -4J3 + 8J4 - 8J6* $J7 F 8Jg f yJ9.  

i [ g ]  = -- I ( R  -2A)Jgd4x -- 1 ( K  -KO)& d3x 
16vG 8rG 
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(R  - 4 R  ='Rap + R apYSRapyG)& d4x +SI 

- $KapKpYK: -MO)& d3x 

where KO and MO are constants chosen to make the action vanish when goo is the flat 
space metric T ~ ~ .  The constant a is a coupling constant and I have included a factor 
( 3 2 r 2 ) - l  in the Gauss-Bonnet term so that the invariant multiplying a is actually the 
Euler characteristic ,y of the space-time. If the manifold has a boundary the formula for 
the Euler characteristic contains boundary terms and these are given precisely by the 
final surface integral appearing in i [ g ]  (Chern 1945). It is not difficult to evaluate f [ g ]  
for the Euclideanised Schwarzschild metric with black hole mass M 

f [ g ]  = 4 r M 2  + 2a. 

The only difference between this and the standard black hole result is the appearance of 
the constant term 2a which arises because x = 2 for Euclideanised Schwarzschild. The 
surface terms proportional to a in f[g] do not in fact contribute as they fall off rapidly at 
large Euclidean distances. If one requires that the black hole action be non-negative, 
the constant a must be non-negative. This is in fact a fairly reasonable assumption to 
make as x is negative only for topologies which deviate significantly from simple 
connectedness and it is not unnatural to suppose that the gravitational path integral 
should be dominated by topologies which are (in some sense) close to simply connected 
ones. Taking a 2 0 will then ensure that the Gauss-Bonnet term adds a non-negative 
quantity to the action. 

The partition function 2 is given by 

In Z = -I  ̂ = - 4 r M ' -  2a 

and the entropy S is easily seen to be 

S = 4 r M 2  - 2a. 

Now as the evaporation process proceeds, the entropy decreases until it reaches zero 
when 

M 2  = 4 2 r .  

Since entropy cannot be negative, the inclusion of the Gauss-Bonnet invariant in the 
action sets a non-zero lower bound to the mass of the black hole which is of the order of 
the Planck mass if a - 1. Although this result is certainly a slight improvement on the 
conventional picture, in which the final state of the black hole is zero mass and infinite 
temperature, it does not include the effects of the back reaction which become 
important at Planck dimensions and which will probably modify the final stages of the 
evaporation process still further. 

In this Letter I have shown that the only quadratic curvature scalar that can be 
included in the gravitational action is the Gauss-Bonnet invariant. The possiblity of 
including such a term to assist in renormalisation has been considered previously in the 
context of supergravity by Christensen and Duff (1978, 1979). One possible benefit of 
including this extra term in the action is that it may rescue 't Hooft and Veltman's (1974) 
result that pure gravity is one-loop renormalisable which has recently been shown to be 
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in error (Capper and Kimber 1980). Two possible difficulties that need to be overcome 
if this is to be achieved are (i) the field equations for IZ # 4 are no longer R,, = 0 and (ii) 
there may be new contributions to the one-loop divergences from the Gauss-Bonnet 
term itself. Further investigation of these matters would be of interest. 
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